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Deep Gray Matter Volume Loss Drives
Disability Worsening in Multiple Sclerosis
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Objective: Gray matter (GM) atrophy occurs in all multiple sclerosis (MS) phenotypes. We investigated whether there
is a spatiotemporal pattern of GM atrophy that is associated with faster disability accumulation in MS.
Methods: We analyzed 3,604 brain high-resolution T1-weighted magnetic resonance imaging scans from 1,417 par-
ticipants: 1,214 MS patients (253 clinically isolated syndrome [CIS], 708 relapsing-remitting [RRMS], 128 secondary-
progressive [SPMS], and 125 primary-progressive [PPMS]), over an average follow-up of 2.41 years (standard devia-
tion [SD] 5 1.97), and 203 healthy controls (HCs; average follow-up 5 1.83 year; SD 5 1.77), attending seven Euro-
pean centers. Disability was assessed with the Expanded Disability Status Scale (EDSS). We obtained volumes of the
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deep GM (DGM), temporal, frontal, parietal, occipital and cerebellar GM, brainstem, and cerebral white matter. Hier-
archical mixed models assessed annual percentage rate of regional tissue loss and identified regional volumes associ-
ated with time-to-EDSS progression.
Results: SPMS showed the lowest baseline volumes of cortical GM and DGM. Of all baseline regional volumes, only
that of the DGM predicted time-to-EDSS progression (hazard ratio 5 0.73; 95% confidence interval, 0.65, 0.82; p <
0.001): for every standard deviation decrease in baseline DGM volume, the risk of presenting a shorter time to EDSS
worsening during follow-up increased by 27%. Of all longitudinal measures, DGM showed the fastest annual rate of
atrophy, which was faster in SPMS (–1.45%), PPMS (–1.66%), and RRMS (–1.34%) than CIS (–0.88%) and HCs (–0.94%;
p < 0.01). The rate of temporal GM atrophy in SPMS (–1.21%) was significantly faster than RRMS (–0.76%), CIS (–
0.75%), and HCs (–0.51%). Similarly, the rate of parietal GM atrophy in SPMS (–1.24-%) was faster than CIS (–0.63%)
and HCs (–0.23%; all p values <0.05). Only the atrophy rate in DGM in patients was significantly associated with dis-
ability accumulation (beta 5 0.04; p < 0.001).
Interpretation: This large, multicenter and longitudinal study shows that DGM volume loss drives disability accumula-
tion in MS, and that temporal cortical GM shows accelerated atrophy in SPMS than RRMS. The difference in regional
GM atrophy development between phenotypes needs to be taken into account when evaluating treatment effect of
therapeutic interventions.
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The clinical course of multiple sclerosis (MS) is het-

erogeneous. Some patients experience relapses with

recovery (relapsing-remitting [RR] MS), whereas others

develop progressive disability either from the onset (pri-

mary-progressive [PP] MS), or after a period of relapses

(secondary-progressive [SP] MS). RRMS patients account

for approximately 90% of cases at onset,1 whose majority

later progress to SPMS. The pathogenic mechanisms

driving accrual of disability are beginning to be eluci-

dated2: Neurodegeneration plays a crucial role in deter-

mining accrual of disability over time.3

Neurodegeneration is reflected in vivo by reduced

brain volume (or brain atrophy), which can be measured

by magnetic resonance imaging (MRI).3 Over time, brain

volume declines more rapidly in MS patients when com-

pared to age-matched healthy controls (HCs).3–6 Across

MS phenotypes, SPMS shows the fastest annual rate of

brain atrophy, which is estimated to be 0.6% (compared

to around 0.2% in age-matched HCs).5 The role of

brain atrophy in monitoring response to treatments in

MS is evolving: Whole brain atrophy has been recently

used as a primary outcome measure in phase II clinical

trials in SPMS.7,8

Whole brain atrophy is mainly driven by neuroaxo-

nal loss in the gray matter (GM).3 GM volume loss is

associated with long-term disability9,10 and explains phys-

ical disability better than white matter9,11 and whole

brain atrophy.5 Some GM regions, such as the cingulate

cortex and thalamus, are affected by volume loss more

extensively than others,12,13 and the extent of their vol-

ume loss correlates with disability13,14 and cognitive

impairment.15 Regional predilection for atrophy is not

unique to MS; for example, hippocampal atrophy is

more pronounced than the whole brain atrophy in the

early phase of Alzheimer’s disease (AD).16 Although

cross-sectional studies have previously shown patterns of

regional atrophy in different types of MS,12,17 studies on

longitudinal evolution of atrophy in different structures

across MS phenotypes are scarce.

The overarching goal of our study was to investigate

whether there is a spatiotemporal pattern of GM atrophy

that is associated with faster disability accumulation in

MS. In a large, multicenter cohort, which included all MS

phenotypes and HCs, we tested the following hypotheses:

(1) Some GM regions show faster atrophy rate than others

and their rate may differ between MS phenotypes; (2)

smaller baseline volumes of brain structures, reflecting a

more extensive neurodegeneration, predict disability

accrual; and (3) the rate of regional volume loss is associ-

ated with the rate of disability accumulation.

Patients and Methods

Participants
In this retrospective study, we collected data from seven Euro-

pean MS centers (MAGNIMS: www.magnims.eu) from 1,424

participants who have been studied between 1996 and 2016;

we included participants who fulfilled the following criteria: (1)

a diagnosis of MS according to 2010 McDonald Criteria18 or a

clinically isolated syndrome (CIS)19; (2) HCs without history

of neurological or psychiatric disorders; (3) at least two MRI

scans acquired with a minimal interval of 6 months with identi-

cal protocol, including high-resolution T1-weighted MRI

(allowing regional gray and white matter segmentation), and

T2/fluid-attenuated inversion recovery (FLAIR), sequences.

Patients were scored on the Expanded Disability Status Scale

(EDSS).20 To increase the number of HCs scans, which were

provided by four centers, we collected data from age-matched

HCs from the Parkinson’s Progression Marker’s Initiative

(PPMI; http://www.ppmi-info.org/data).

MRI scans were taken under consent obtained from each

subject independently in each center. The final protocol for this

study was reviewed and approved by the European MAGNIMS

collaboration for analysis of pseudo-anonymized scans.
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Image Acquisition
We included scans from 13 different MRI protocols; all centers

except one provided three-dimensional (3D)/T1-weighted scans

(Supplementary Tables 1 and 2 show the MRI protocols).

Image Analysis
We performed image analysis as follows.

BIAS FIELD CORRECTION. We used N4 bias field correction

to correct for field inhomogeneity in T1-weighted scans using

ANTs v2.10.21

LESION FILLING. Lesion masks were manually delineated on

PD/T2 images by different raters at each center semiautomati-

cally, except for three centers that used the same automatic

lesion segmentation with LST toolbox (version 2.0.15).22 We

calculated linear transformation matrices to register T2/FLAIR

with the T1-weighted scan using FSL-FLIRT v5.0.23 Then, we

applied these matrices to lesion masks to transfer them into the

accompanying T1 subject space. We used the FSL lesion filling

method, which uses a white matter mask calculated with FSL-

FAST24 to fill T1 hypointensities within normal-appearing

whiter matter, so as to reduce segmentation errors, as previously

done.25–27

SYMMETRIC WITHIN-SUBJECT REGISTRATION. To avoid

asymmetric registration and interpolation of longitudinal scans

(eg, toward the baseline scan), we constructed an unbiased

subject-specific template that has “equal distance” from each time

point using FreeSurfer version 5.3.28–30 We linearly transformed

T1-weighted images to this symmetric space with the unbiased

transformation matrix for each time point and used cubic B-

spline interpolation to reduce interpolation artefacts. We manu-

ally checked the alignment of scans in the symmetric space.

TISSUE SEGMENTATION. Next, in the symmetric space, we

segmented T1 scans into the GM, white matter, and cerebro-

spinal fluid (CSF) with the Geodesic Information Flow (GIF)

software (part of NifySeg: http://cmictig.cs.ucl.ac.uk/niftyweb/

program.php?p5GIF),31 and parcellated each hemisphere into

regions of interest according to the Neuromorphometric

atlas.32 GIF uses an atlas propagation and label fusion strategy

to calculate the voxel probabilities of GM, white matter, and

CSF31; this method has been previously used in MS and other

neurodegenerative disorders.33,34 The template library had 95

MRI brain scans (HCs and patients with AD) with neuroana-

tomic labels (http://www.neuromorphometrics.com/). This

atlas, which is similar to the Mindboggle atlas, was developed

to improve the consistency and clarity of the Desikan-Killiany

protocol.32

To calculate brain masks and exclude segmentation errors

outside of the brain, we used STEPS (Similarity and Truth Esti-

mation for Propagated Segmentations, http://cmictig.cs.ucl.ac.

uk/niftyweb/program.php?p5BRAIN-STEPS) based on a tem-

plate library of 682 hand-drawn brain masks.35,36 These maps

were applied to each time point separately.

REGIONAL VOLUME CALCULATION. We visually assessed

the segmentations to assure the quality for statistical analysis.

To calculate regional volumes, we summed the probability of

the segmented tissue voxels (GM or white matter) in each par-

cellated region and multiplied the sum with the voxel volume.

We averaged values between left and right hemispheres. Next,

we summarised the regional volumes according to Neuromor-

phometrics protocol by summing the volume of GM regions in

the temporal, parietal, occipital, frontal lobes, cerebellum, and

deep GM (DGM; thalamus, putamen, globus pallidus, caudate,

and amygdala). We also obtained the volume of the brainstem

and of the cerebral white matter.

Figure 1 shows the image analysis pipeline.

Statistical Analysis

BRAIN VOLUMES AT BASELINE AND RATES OF VOLUME

CHANGES OVER TIME. To investigate baseline volumes (inter-

cept) and rates (slopes) of volume change by subject group and

region, we used linear mixed-effects models with the volume at a

given time as the response variable, and time and interactions with

time as fixed-effect covariates.37 This model estimates adjusted rate

FIGURE 1: Image analysis pipeline. An unbiased symmetric image registration approach was used to calculate atrophy. [Color
figure can be viewed at www.annalsofneurology.org]
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while allowing for nested correlation structures, such as time of

visit within subject within scanner, by incorporating, in this exam-

ple, subject and scanner random intercepts, and a random slope on

time. The interaction terms with time (eg, subject group 3 time)

allows the estimation of rate differences across the interacting vari-

able, in this example subject groups or clinical phenotypes. Includ-

ing another interaction with time, such as sex 3 time, adjusts the

rate for gender. In addition to time, the fixed-effect covariates

were: scanner magnetic field, subject group, sex, age at baseline,

and total intracranial volume (sum of the volumes of GM, WM,

and CSF) at baseline; and the interactions of each of these with

time. Disease duration was too highly correlated with age at base-

line to give reliable estimation and was omitted from the final

models. To estimate the percentage changes per unit (year) increase

in time, we log-transformed the volume.38 We adjusted time to

zero for those visits in which a patient converted from one pheno-

type to another (eg, CIS to RRMS). We performed post-hoc analy-

ses to identify specific GM regions within the cerebral lobes and

among the DGM nuclei that showed significant differences

between MS phenotypes, as well as the default-mode network

regions.39

To investigate whether there is an association between the rate

of loss in specific regions and MS phenotypes, three-way interactions

were used, for example, clinical phenotype 3 region 3 time. We used

R (version 3.2.2; R Foundation for Statistical Computing, Vienna,

Austria) and the NLME package.40,41

For each model, we visually checked the heteroscedasticity

(which is the unequal variance of a variable across the range of

values of a second variable that predicts it) per group by plot-

ting residuals against the fitted values.

We corrected for multiple comparisons accounting for

the number of all the tests performed with the false-discovery

rate (FDR) method.

EFFECT OF MRI PROTOCOLS ON IMAGING MEASURES. To

assess the effect of the MRI protocol on MRI measures (we

took into account the protocols rather than the centers because

some centers acquired more than one protocol with more than

one scanner), we included it as a fixed-effect variable in a sepa-

rate mixed-effect model, and calculated the average effect sizes

for MRI protocols and MS phenotypes (ie, disease effects) while

fixing other variables.

ASSESSING ASSOCIATIONS BETWEEN BRAIN TISSUE VOL-

UMES AND DISABILITY ACCRUAL. For easier interpretation

of clinical and imaging measures, we standardized volumes by

subtracting the mean and dividing by the standard deviation

(SD; Z-score). We analyzed CIS and relapse-onset patients

together, because some patients had converted from CIS to

RRMS, or from RRMS to SPMS. This allowed us to take

advantage of a longer follow-up period. With similar mixed-

effects models, we investigated the following three questions:

(1) Are the baseline volumes of the DGM, the temporal,

frontal, parietal, occipital and cerebellar GM, brainstem, and

white matter, and white matter lesion load associated with

EDSS at baseline?; (2) Are changes in all these regional vol-

umes and white matter lesion load associated with EDSS

changes over time?; and (3) Do baseline volumes of all these

regions and white matter lesion at baseline predict time-to-

EDSS progression (event 5 EDSS progression) during fol-

low-up? The EDSS-progression event was defined as a 1.5

increase in EDSS, if the baseline EDSS was 0; 1-point

increase if EDSS was less than or equal to 6; and 0.5 increase

if EDSS was more than 6.42 We used a Cox regression model

to explore whether baseline volumes of these structures pre-

dicted time to event. We performed a post-hoc analysis using

all GM regions to determine the most important predictors

TABLE . Baseline Characteristics of Participants

Group Healthy

Controls

CIS RRMS SPMS PPMS

Total no. (no. of females) 203 (112) 253 (171) 708 (473) 128 (75) 125 (55)

Average follow-up

in years (range)

1.83 (0.5–7.8) 1.46 (0.5–13.0) 2.72 (0–13) 2.06 (0.0–5.5) 2.85 (0.5–6.0)

Average age (6 SD) 38.7 6 10.5 33 6 8 38.2 6 9.8 48.2 6 9.8 48.5 6 10.1

Average disease

duration (6 SD)

— 0.4 6 1.4 6.7 6 7.3 15.6 6 9.9 6.8 6 5.9

Median EDSS (range) — 1 (0.0–4.5) 2 (0–7) 6 (2.5–9.0) 5 (2–8)

Median T2 lesion load (ml)

(first–third quartiles)

— 2.97 (1.01–5.04) 5.05 (2.05–11.79) 11.04 (3.18–23.14) 9.38 (2.69–22.02)

% (no.) of patients on DMTs — 20 (52) 49 (345) 41 (52) 6 (8)

SD 5 standard deviation; CIS 5 clinically isolated syndrome; RRMS 5 relapsing-remitting multiple sclerosis; SPMS 5 secondary-progressive

multiple sclerosis; PPMS 5 primary-progressive multiple sclerosis; ml 5 milliliter; EDSS 5 expanded-disability status scale; DMTs 5 disease mod-

ifying treatments.
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FIGURE 2: Baseline volumes and annual percentage loss of brain regions in clinical phenotypes and healthy controls. Adjusted base-
line values for HCs, CIS, RRMS, SPMS, and PPMS are shown in (A), where the adjusted mean is shown as a point, and error bars show
the 95% confidence interval. Adjusted p values of pair-wise comparisons between groups are shown in Supplementary Table 4. Lon-
gitudinal analyses are shown in (B) and (C). Bar charts of the adjusted annual percentage of loss are shown in (B) for the predefined
regions. Height of each bar chart is the average estimate of the percentage annual loss from the mixed-effects model for each
group. Error bars represent 95% confidence interval of these estimates. Adjusted p values for pair-wise comparison between
regions across clinical phenotypes and HCs are shown in Supplementary Table 4. White matter volumes are not shown in (B) and (C)
because they did not show a significant change over time in any clinical phenotype. Post-hoc analyses of annual percentage loss are
shown in (C) where DGM nuclei, temporal, limbic, and default mode network regions were selected. Similar to (B), the adjusted aver-
age annual percentage volume loss for these regions is the height of each bar chart and error bars represent 95% confidence inter-
vals. Baseline values (A) and rates (B and C) were adjusted in a single mixed-effects hierarchical model including age, sex, total
intracranial volume at baseline, scanner magnetic field, and their interactions with time as the fixed effects. Center, subject and visits
were nested (hierarchical) random effects. HC 5 healthy controls; CIS 5 clinically isolated syndrome; RRMS 5 relapsing-remitting
multiple sclerosis; SPMS 5 secondary-progressive multiple sclerosis; PPMS 5 primary-progressive multiple sclerosis. [Color figure
can be viewed at www.annalsofneurology.org]
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of time-to-EDSS progression (as defined above) and confirm

that the results of the DGM were not affected by the bias of

merging a higher number of cortical regions into the main

lobes. We performed FDR correction to adjust for multiple

comparisons.

ADDITIONAL ANALYSES: SOFTWARE RELIABILITY AND

EFFECTS OF DISEASE-MODIFYING TREATMENTS. We car-

ried out additional analyses to assess the reliability of brain vol-

umes estimated with GIF software, FSL-FIRST, and SPM12,

and effects of treatments on atrophy measures. We also per-

formed area under the curve (AUC) analysis to examine the

prognostic accuracy of adjusted DGM volumes at individual

level (see Supplementary Material).

Results

MRI scans of 1,417 subjects were analyzed (scans of 3

subjects were excluded because of significant motion arte-

facts on visual inspection and 4 because of registration

issues because of missing MRI header information);

1,214 patients (253 had CIS, 708 had RRMS, 128 had

SPMS, and 125 had PPMS), and 203 were HCs. In

total, we analyzed 3,604 T1-weighted MRIs. Average

number of scans per subject was 2.54 (SD 5 1.04), with

an average follow-up of 2.41 years (SD 5 1.97) for

patients and 1.83 (SD 5 1.77) years for HCs (see the

Table for follow-up information per group). The total

numbers of participants with three or more visits for

each group were: 90 HCs, 48 CIS, 334 RRMS, 39

SPMS, and 58 PPMS. A total of 96 patients with CIS

(38%) converted to RRMS, and 28 patients with RRMS

(4%) converted to SPMS during the follow-up.

There was a significant difference in sex ratio

between groups (p < 0.001; see the Table for sex ratios).

Patients with progressive MS (SPMS and PPMS) had sig-

nificantly greater disability than patients with RRMS and

CIS (Mann–Whitney U tests, p < 0.001; see the Table)

and were older than RRMS (p < 0.001; average differ-

ence 5 10.7 years), CIS (p < 0.01; average difference 5

15.6 years), and HCs (p < 0.01, average difference 5 10

years). Age was similar between patients with RRMS and

HCs. Patients with CIS were younger than HCs (p <

0.01; average difference 5 4.9 years). Patients with CIS

had the lowest T2 lesion load, and patients with SPMS

had the highest T2 lesion load. Approximately half of

patients with RRMS were on disease-modifying treat-

ments (see the Table).

Brain Atrophy at Baseline in MS and Rates of
Volume Changes Over Time
At baseline, all clinical phenotypes (CIS, RRMS, SPMS,

and PPMS) had significantly smaller cortical GM and

DGM volumes than HCs. SPMS showed the lowest cor-

tical GM and DGM volumes, followed by PPMS,

RRMS, and CIS. All clinical phenotypes, but not CIS,

had significantly reduced whole brain and white matter

volumes when compared to HCs (see Fig 2A).

The fastest regional decline in tissue volume over

time was observed in the DGM in all clinical phenotypes

(PPMS: –1.66% per year; SPMS: –1.45%; RRMS: –

1.34%; CIS: –0.88%; p < 0.01) and in HCs (–0.94%).

Rate of atrophy in the DGM was greater in RRMS,

SPMS, and PPMS than CIS and HCs (all p values <0.01;

(Fig 2B; Supplementary Tables 3 and 4), but did not differ

between RRMS, SPMS, and PPMS. Rate of volume loss

in the DGM in all MS patients together was significantly

higher than that in the cortical and cerebellar GM and

brainstem (although the rate of volume loss over time in

these areas was still significant; all p values < 0.05).

Volume loss of the whole cortical GM was faster in

SPMS (–1.11% per year), PPMS (–0.79%), RRMS (–

0.67%), than HCs (–0.34%; all p values <0.05). Among

the cortical regions, the temporal lobe GM showed a

faster volume loss in SPMS (–1.21%) than RRMS (–

0.77%) and CIS (–0.75%; all p values <0.05; Fig 2B;

Supplementary Tables 3 and 4). Similarly, the parietal

GM showed a faster volume loss in SPMS (–1.24%)

than CIS (–0.63%; p < 0.05; Fig 2B; Supplementary

Tables 3 and 4). No differences in rates of volume loss

were observed in the frontal and occipital GM between

clinical phenotypes. Overall, all the cortical GM regions,

with the exception of the occipital cortex, showed a faster

rate of atrophy in MS than HCs (Fig 2B; Supplementary

Table 4).

The white matter did not show a significant rate of

volume loss in HCs or any of the clinical phenotypes.

There was no heteroscedasticity in the plots of

residuals against fitted values.

In the post-hoc analyses, when looking at regions

and clinical phenotypes, we found, that among the

DGM nuclei, the putamen showed the fastest volume

loss in PPMS (–2.6%). Within the temporal lobe GM,

the fastest volume loss was observed in the temporal pole

(–1.47%) and posterior insula in SPMS (–1.19%).

When looking at the parietal lobe GM, the precuneus

showed the fastest atrophy rates in SPMS (–1.28%; Fig

2C). Whereas the fastest rate of atrophy was observed in

the DGM in SPMS, the temporal lobe GM showed the

highest difference between SPMS and HCs (see Fig 2C).

There was no significant effect of sex on rates of

atrophy. There was no significant association between

GM volumes and T2 (or FLAIR) lesion load.

Regions Showing the Highest Rate of Loss
When we compared the rate of volume loss across differ-

ent regions in all patients (CIS, RRMS, SPMS, and
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PPMS) together, the fastest decline (or lowest slope) was

observed in the DGM (Supplementary Tables 3 and 4).

Rate of loss in the cortical GM regions was similar

between lobes and to that of the cerebellum. The slowest

rate of loss was observed in the brainstem.

Spatiotemporal Pattern of GM Volume Loss in
Clinical Phenotypes
Although SPMS showed the lowest baseline volumes of

cortical GM and DGM, and the rate of the DGM vol-

ume loss was faster in SPMS, PPMS, and RRMS than

CIS and HCs, there was no significant association

between rate of loss in specific regions and clinical phe-

notypes, which suggests that all clinical phenotypes share

a similar spatiotemporal pattern of GM loss.

Effect of MRI Protocols on Imaging Measures
The average effects of MS phenotypes on brain volumes

at baseline were higher than the protocol effect on the

brain volumes (protocol effects: whole brain 5 4.3%;

cortical GM 55.1%; DGM 5 8.5%; disease effects:

whole brain 5 4.8%; cortical GM 5 5.2%; DGM 5

13.7%). Average effects of MS phenotypes were higher

than the effects of protocol on the rates of atrophy of the

cortical GM and DGM (protocol effects: cortical GM 5

0.14%; DGM 5 0.21%; disease effects: cortical GM 5

0.57%; DGM 50.53%), but not those of the whole

brain (protocol effect 5 0.51%; disease effect 5 0.38%).

Association Between EDSS and GM Loss
In all clinical phenotypes combined, lower DGM and

cortical GM volumes at baseline were associated with

higher disability, as measured by the EDSS (DGM b 5

–0.71, p < 0.0001; cortical GM b 5 –0.22; p<0.0001).

Under the assumption of a linear relationship between

EDSS and GM volume, this suggests that for every Z-

score decrease in the DGM and cortical volume at base-

line, the baseline EDSS increased on average by 0.7 and

0.22, respectively.

There was a significant progression of EDSS in

both relapse-onset and PPMS patients, which on average

increased by 0.07 and 0.2 per year, respectively. When

we examined associations between the rate of EDSS

changes and rate of changes in the volumes of cortical

GM regions, cerebellar GM, and DGM over time, only

the rate of loss in the DGM was associated with

FIGURE 3: DGM volume predicts future progression of EDSS. Survival curves for time to event (sustained EDSS progression;
see Patients and Methods for definition) in CIS, relapse onset, and PPMS. We have analyzed CIS and relapse-onset patients
together because a proportion of patients convert from CIS to RRMS, or from RRMS to SPMS, during the course of study. Haz-
ard ratios for models with continuous outcome variables (regional volumes) are reported. DGM 5 deep gray matter; EDSS 5
Expanded-Disability Status Scale; HC, healthy controls; CIS, clinically isolated syndrome; RRMS, relapsing-remitting multiple
sclerosis; SPMS, secondary-progressive multiple sclerosis; PPMS, primary-progressive multiple sclerosis; HR 5 hazard ratio;
CI 5 confidence interval. [Color figure can be viewed at www.annalsofneurology.org]

Eshaghi et al: Ongoing atrophy in MS phenotypes

Month 2018 7

http://www.annalsofneurology.org


disability accumulation (b 5 –0.04; 95% confidence

interval [CI], –0.02, –0.06; p 5 0.006). Under the

assumption of a linear relationship between EDSS and

rate of GM volume loss over time, this suggests that

every SD (Z-score) loss in the rate of DGM volume cor-

responded to an annual EDSS gain of 0.04.

The percentage of patients who had EDSS progres-

sion during follow-up (or who experienced the “event”)

was 26%. When we looked at baseline predictors of dis-

ability accumulation, without any longitudinal imaging

measure in the model, only the DGM predicted future

EDSS progression. The hazard ratio (95% CI, p value) for

time-to-EDSS progression was 0.73 (95% CI, 0.65, 0.82;

p < 0.0001), which suggests that, for every SD (Z-score)

decrease in the DGM volume at baseline, the risk of pre-

senting a shorter time to EDSS worsening during the

follow-up increased by 27% (95% CI, 18–35]. The hazard

ratio remained similar when we analyzed relapse-onset and

PPMS patients separately (0.72 and 0.73, respectively). Fig-

ure 3 illustrates the survival curve for these analyses.

In the post-hoc analyses, baseline thalamic volume

had the highest predictive value of EDSS progression

FIGURE 4: Risk of EDSS progression during follow-up for each Z-score volume loss of the brain regions at baseline (post-hoc anal-
ysis). Results of the post-hoc Cox proportional hazards univariate models are shown for the time-to-event analyses (event 5 sus-
tained EDSS worsening; see Patients and Methods for the definition) in the regions of Neuromorphometrics’ atlas, which are
shown in (A). The predictors were the baseline volumes of the regions shown in the x-axes of (B) for CIS, RRMS, and SPMS and (C)
for PPMS. CIS, RRMS, and SPMS were analyzed together because several patients convert from one phenotype to another. Brain
maps are shown in the left column, and bar charts of the same analyses are shown in the right column of (B) and (C). Only regions
whose p value of the survival analysis survived FDR correction (adjusted p < 0.05) are shown in (B) and (C). The y-axes show the
risk of progression for each Z-score loss in the volume of the corresponding brain region on x-axes. For example, for every Z-score
loss of the thalamus volume at baseline, the risk of EDSS worsening during follow-up increased by 37% for the CIS, RRMS, and
SPMS group and 40% for PPMS. Color maps code the importance of baseline volumes of the regions to predict EDSS worsening
(or EDSS progression) during follow-up. The absolute values of coefficients for ventricular volumes are shown in (B), because they
have an effect in the opposite direction of other structures. Error bars indicate the 95% confidence intervals. EDSS 5 Expanded-
Disability Status Scale; HC, healthy controls; CIS, clinically isolated syndrome; RRMS, relapsing-remitting multiple sclerosis; SPMS,
secondary-progressive multiple sclerosis; PPMS, primary-progressive multiple sclerosis. [Color figure can be viewed at www.
annalsofneurology.org]
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during follow-up in both PPMS and the relapse-onset

groups, by increasing the risk to a shorter time to EDSS

worsening of 37% in relapse-onset MS and 40% in

PPMS (Fig 4B,C). In this analysis, the predictive value

of the thalamus was followed by that of the hippocampus

and angular gyrus in relapse-onset MS (Fig 4B), and by

that of the putamen, posterior insula, and temporal pole

in PPMS (Fig 4C).

There were no significant differences in rates of loss

in patients who were receiving disease-modifying drugs

and those who were not (see Supplementary Text). Anal-

yses with GIF software, FSL-FIRST, and SPM12 con-

firmed the reliability of brain volumes estimates (see

details in Supplementary Text). AUC analysis showed

that DGM volumes were similar to a random classifier

in prognosticating individual patients (see details in Sup-

plementary Text).

Discussion

In this large, multicenter study, we have shown that vol-

ume loss in DGM over time was faster than that observed

in other brain regions across all clinical phenotypes, and

DGM volume loss was the only GM region associated

with disability accumulation. Additionally, we found that

the smaller DGM volume at baseline was associated with

increased risk of shorter time to EDSS progression, in

agreement with previous studies that showed smaller

DGM volume associated with higher disability.14,15 Inter-

estingly, we found that atrophy rates of the GM of cortical

lobes were the fastest in SPMS, and were faster in the tem-

poral lobe in SPMS in comparison with RRMS and CIS

and in the parietal lobe in SPMS in comparison to CIS.

However, no significant association between cortical

regions and disability progression was detected. Overall,

our findings suggest that the development of DGM atro-

phy may drive disability accumulation irrespective of clini-

cal phenotypes, thereby becoming a useful outcome

measure in neuroprotective clinical trials. Although the

spatiotemporal pattern of atrophy remains similar across

MS phenotypes, some cortical regions show accelerated

atrophy in SPMS than RRMS and/or CIS. We now discuss

these results in turn and in detail.

The pathological events that underpin DGM atro-

phy are not known, but this is generally interpreted as the

result of neurodegeneration. Previous studies have shown

that DGM atrophy is more severe in patients with progres-

sive MS, longer disease duration, and worse cognitive per-

formance.14,15,43 Our post-hoc analyses showed that the

thalamus, which is the DGM’s largest component, was a

better predictor of future disability than other regions, and

the rate of atrophy in the putamen was the highest across

DGM nuclei. Previous studies, including those using

advanced MRI, have found that thalamic damage at study

entry was associated with higher disability.13–15 DGM

structures are extensively connected with cortical GM

regions, and therefore DGM atrophy could be attributed

to retrograde and anterograde neurodegeneration through

tracts that connect GM areas. For example, the extent of

cellular density loss in the thalamus is associated with neu-

rodegeneration in the remote (but connected) cortical

regions, over and beyond the extent of atrophy explained

by demyelination in connecting tracts.44 There is also evi-

dence of other neurodegenerative mechanisms in the

DGM nuclei. For example, their higher load of iron than

other regions can accumulate oxidised lipids, which are

associated with neurodegeneration.45 In our healthy con-

trols, rate of DGM atrophy was faster than that in other

regions, suggesting that it may be a hotspot for both age-

and disease-related atrophy in the human brain, although

a methodological issue, related to its more uniform struc-

ture than other brain regions, cannot be excluded. In AUC

analysis, we found that, at the individual level, DGM vol-

ume lacks prognostic value, which is attributed to the high

variability typical of volumetric MRI studies.46 Neverthe-

less, the DGM volume holds strong promise as a marker

of disease progression (at the group level) with the poten-

tial to respond to neuroprotective treatments that target

neurodegeneration in MS.

Interestingly, the temporal lobe showed a significant

acceleration in SPMS when compared to both RRMS

and CIS. Similarly, the parietal lobe GM showed a sig-

nificant acceleration of atrophy in SPMS in comparison

to CIS. Our post-hoc analysis showed that the temporal

pole and insula were the most affected structures in the

temporal GM. Pathological studies have demonstrated an

increase in the rate of neurodegeneration, especially in

the temporal regions, during progressive stages of MS in

comparison to RRMS and CIS.47,48 Overall, a global

pathological process in MS49 may become more pro-

nounced in certain regions, such as the temporal GM,

because of other mechanisms, such as static exposure to

CSF (the insula in the temporal lobe) or hypoxia in

watershed areas (some DGM nuclei such as the pal-

lidum). For example, meningeal inflammation and corti-

cal demyelination, which may play a role in cortical

atrophy, preferentially affect deep sulci, such as the

insula, where there is more exposure to static inflamma-

tory cytokines.2 Our findings also suggest that regions

with more connections may be vulnerable to atrophy.

For example, among the parietal cortical regions, the pre-

cuneus, a core part of an important functional brain net-

work (default mode network), showed the fastest atrophy

rates in SPMS.39 Thus, acceleration of atrophy during

SPMS may be explained by cortical network collapse
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with advancing of degeneration from initial injury sites

(focal lesions in the white matter or initial DGM degen-

eration) to interconnected neocortical systems.50 We

found that MS phenotypes shared a common spatiotem-

poral pattern of volume loss (no significant three-way

interaction of time 3 region 3 phenotype). This shows,

in line with previous studies, that the difference in

pathology of progressive MS is only quantitative rather

than qualitative in comparison to RRMS.2,51

Cortical GM atrophy was observed at study entry

across clinical phenotypes, even in CIS, when compared

to HCs, and was the greatest in progressive MS, in agree-

ment with earlier studies.17,52 Our findings of faster

whole brain atrophy in SPMS, PPMS, and RRMS than

CIS, who, in turn, showed higher cortical atrophy than

HCs, are similar to previous studies on longitudinal

whole brain atrophy,5,53,54 regional atrophy,17,55–57 and

pathology of MS phenotypes,2,47 Our study confirms our

previous findings that relationships between whole brain

atrophy and clinical changes are weak or absent5 and

shows DGM atrophy as a stronger marker of clinical dis-

ability. Although the GM volumes of cortical lobes could

not predict future EDSS progression, the more detailed

post-hoc analyses showed that regional volumes, such

those of the hippocampus and the angular gyrus, were

associated with future EDSS progression. These regions

are highly connected to other regions, and especially the

angular gyrus (like the precuneus) acts as a hub in the

default mode network, which could make it vulnerable

to atrophy, as explained above.39

This study was not designed to assess the effect of

treatment on atrophy rates, but does study atrophy while

adjusting for possible confounding effects. The rates of

atrophy in all clinical phenotypes were similar in people

who were receiving disease-modifying treatments to those

who were not. Even though we could not ascertain the

duration of treatments attributed to retrospective nature

of this study, the majority (90%) of patients on disease-

modifying treatments were receiving first-line injectable

drugs (interferon or glatiramer acetate) before study

entry. The effects of these drugs on brain atrophy are

modest at best.58,59 Therefore, drug effects are unlikely

to be confounders of our analysis.

One strength of our study is that we included a large

number of patients, who underwent the same protocol on

the same MRI scanner over time at single sites. However,

different MRI protocols could have an effect on atrophy

measures and is a limitation of our study.60,61 We therefore

used a hierarchical statistical design based on scanner. Our

study was powerful enough because the effects of clinical

phenotype on the regional rates of atrophy were higher

than the effects of between-center variation.

We chose GIF software to segment and parcellate

the brain31 because it allowed inclusion of two-

dimensional MRI data (which we had for one center),

and did not require any manual editing, unlike Freesur-

fer, which would have been unfeasible for such large

number of scans. Our reliability analysis showed excellent

agreement between GIF-derived DGM volume and that

obtained using FSL-FIRST, and between GIF-derived

cortical volumes and those obtained using SPM12,

respectively. Therefore, we chose to present the results

obtained with GIF because it allowed us to rely on only

one method to segment DGM and cortical GM, and

estimate total intracranial volume (TIV). We used TIV

to adjust for variations in head size, rather than the skull

size, so that a more reliable estimate of head size was

obtained, irrespectively of the field of view, the choice of

the inferior cutoff of the brain for the analysis, and

demographic factors (eg, age, weight).62 With regard to

the statistical methods, we used mixed-effects models to

calculate atrophy rates,41 which naturally accommodated

multiple (three or more) time points with varying inter-

vals between follow-ups, and patients who convert from

one phenotype to another (eg, CIS to RRMS). These

two issues are cumbersome to address with methods that

rely on pairwise comparisons (eg, SIENA, BSI) and suf-

fer from higher variance in brain atrophy estimates as the

interval between two scans increases.63,64 Mixed-effects

modeling, instead, estimates a variance component to

eliminate implausible inconsistencies.65,66 Based on our

experience and the results of this study, we recommend

the acquisition of high-resolution 3D-T1 images (isotro-

pic 1mm3). Several methods can calculate DGM vol-

umes, such as FSL-FIRST and GIF. We recommend the

use of the GIF software when it is desirable to use the

same method to segment both the cortex and DGM.

There were also limitations in this study. The

majority of centers did not provide MRI scans of HCs;

however, we included a large number of HCs including

those from an external initiative (PPMI). Our findings of

volume changes in HCs were consistent with the litera-

ture. Meta-analyses have shown, in individuals aged <70

years, rate of whole brain loss ranges from 0 to –0.5 (our

study 5 –0.04), GM loss ranges from 0% to –0.5% per

year (cortical GM in our study 5 –0.34%),67 and the

subcortical structures may show loss of up to –1.12%

(DGM in our study 5 –0.94).68 Cognitive functions

were not tested, and it is unknown whether cortical pat-

terns of GM atrophy over time were associated with cog-

nitive impairment. Clinical trials in MS (and in

progressive MS in particular) include confirmed disability

progression, based on the EDSS, as a primary outcome

measure. Although for EDSS the model-estimated
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coefficients and their p values and confidence intervals

are valid for comparison between brain regions, the abso-

lute value of these coefficients must be interpreted with

caution, because the EDSS does not have a uniform lin-

ear interpretation. Because this was a retrospective study,

the duration of treatments before entry to the study

could not be ascertained for all participants. Disease-

modifying drugs may have lasting effects; for example,

they may slow the accrual of disability after a decade.59,69

Moreover, MRI sequences sensitive to cortical lesions

were not available, and the effects of cortical lesions on

atrophy measures remain unknown.

In conclusion, DGM atrophy showed the most

rapid development over time—extending previous cross-

sectional studies that showed a relationship between

DGM atrophy and disability—was most closely associ-

ated with disability accumulation and predicted the time

to EDSS worsening. In phase II trials of neuroprotective

medications in MS, DGM atrophy measures may there-

fore have greater potential to show treatment effects than

other regional GM or whole brain measures. There was a

disconnect between DGM atrophy and cortical atrophy

rates. Temporal and parietal cortices showed a faster rate

of atrophy in SPMS than RRMS and/or CIS, whereas

DGM showed a faster rate of atrophy in SPMS than CIS

only, suggesting that neurodegeneration in GM regions

may proceed at a different rate which should be taken

into account in the design of clinical trials.
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